Lignocellulosic Biorefinery of agrofood byproducts combining hydrothermal fractionation and catalytic hydrogenation

Título del proyecto.-Biorrefinería lignocelulósica de subproductos de industria agroalimentaria para obtención de bioproductos mediante fraccionamientos hidrotermales e hidrogenación catalítica
Código de referencia del proyecto.- CTQ2015-64892-R
Entidad Financiadora.- Ministerio de Economía y Competitividad
Programa/Plan.- Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Año de la Resolución (fecha).- 2016      Duración: 3 Años
Importe concedido.- 169.400,00€


BIOFRAHYNERY project is targetted at the need of both developing and integrating biorefinery processes using real residual biomass or subproducts. Similarly to a conventional refinery it requires fractionation, conversion and/or deep conversion processes, the latter to improve the quality and reduce the amount of oxygen (increase stability).

In this project we develop the fractionation of lignocellulosic biomass together with a subsequent hydrogenation of the fractions of structural polysaccharides such as hemicellulose and cellulose. Residual biomass or by-products from food processing industries will be used: cereal bran, beet pulp and spent coffee. A global approach will be considered for the valorization of biomass, including recovery stages of extractives and minor compounds, adding value to the overall process. The technologies that will be used in this project are: pressurized hot water extraction, ultrasonic assisted extraction, extraction with pressurized fluids (ethanol-water and supercritical CO2) and hydrolytic hydrogenation of polysaccharides with heterogeneous catalysts.

The project includes experimental work on the study of process operating conditions and a process modeling task, with model validation through experimental results, that will open the doors to the scale up. Furthermore, it includes the preparation of a business plan, strategy of competitive intelligence and a sustainability analysis (GRI and IChemE), which will serve as a starting point to enhance the impact analysis.

The project is implemented through the following specific objectives: (1) fractionating residual biomass and agri-food surplus for extractive, minority and hemicellulose components, (2) catalytically hydrogenated and hemicellulose extracts from prior fractionation process (3) Modeling the fractionation and hydrogenation process of agro-food biomass and simulate real continuous process and (4) propose business plan and analyze the economic, environmental and social sustainability.

BIOFRAHYNERY project will provide the necessary engineering knowledge of fractionation steps and hydrogenation of lignocellulosic biomass , developing a process model for addressing the scale-up. It will feature a business plan for this type of biorefineries and an economic feasibility study.


Main results

  1. Sánchez-Bastardo, N., Romero, A., Alonso, E. (2017). Extraction of arabinoxylans from wheat bran using hydrothermal processes assisted by heterogeneous catalysts. Carbohydrate Polymers, 160: 143- 152.
  2. Sánchez-Bastardo, N., Alonso, E. (2017). Maximization of monomeric C5 sugars from wheat bran by using mesoporous ordered silica catalysts. Bioresource Technology, 238: 379-388.
  3. Piqueras, C.M., Cabeza, A., Gallina, G., Cantero D.A., García-Serna, J., Cocero, M.J. (2017). Online integrated fractionation-hydrolysis of lignocellulosic biomass using sub- and supercritical water. Chemical Engineering Journal, 308:110-125.
  4. Yedro, F.M., Grénman, H., Rissanen, J., Salmi, T., García-Serna, J., Cocero, M.J. (2017). Chemical composition and extraction kinetics of Holm oak (Quercus ilex) hemicelluloses using subcritical water. The Journal of Supercritical Fluids, in press:
  5. Pinilla-de Dios, M., Andrés-Iglesias, C., Fernández, A., Salmi, T., Galdámez, J.R., García-Serna, J. (2017). Effect of Zn/Co initial preparation ratio in the activity of double metal cyanide catalyst for propylene oxide and CO2. European Polymer Journal, 88:280-291.
  6. Romero, A., Nieto-Márquez, A., Alonso, E. (2017). Bimetallic Ru:Ni/MCM-48 catalyst for the effective hydrogenation of D-glucose into sorbitol. Applied Catalysis A: General, 529:49-59.
  7. Cabeza, A., Sobrón F., García-Serna, J., Cocero, M.J. (2016). Simulation of the supercritical CO2 extraction from natural matrices in packed bed columns: User-friendly simulator tool using Excell. Journal of Supercritical Fluids, 116:198-208.
Print Friendly, PDF & Email